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Abstract

The spatial linear instability of incompressible
confluent wake/boundary layers is analyzed. The flow model

adopted is a superposition of the Blasius boundary layer and
a wake located above the boundary layer. The Orr-

Sommerfeld equation is solved using a global numerical
method for the resulting eigenvalue problem. The numerical

procedure is validated by comparing the present solutions
for the instability of the Blasius boundary layer and for the

instability of a wake with published results. For the
confluent wake/boundary layers, modes associated with the
boundary layer and the wake, respectively, are identified.

The boundary layer mode is found amplified as the wake

approaches the wall. On the other hand, the modes
associated with the wake, including a symmetric mode and

an antisymmetric mode, are stabilized by the reduced
distance between the wall and the wake. An unstable mode

switching at low frequency is observed where the

antisymmetric mode becomes more unstable than the
symmetric mode when the wake velocity defect is high.

1. Introduction

The linear instability of the boundary layer
developed along a flat plate is a classical problem I in

hydrodynamic stability and has been studied by many
authors. The disturbances obtained by the solution of the

Orr-Sommerfeld equation have been found useful and
reliable in describing many different fluid flow phenomena

such as the initial stage of natural flow transition in the
boundary layer 2 and the bursting of the streamwise coherent
structures in turbulent boundary layers 3.
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Possibly just as widely studied as the boundary

layer instability, the instability of wake flows is another
classical analysis examined by many reports 47. "rvco

amplifying modes are often identified, a symmetric and an
antisymmetric modes. For a near wake 5, the symmetric
mode was found to have a higher spatial growth rate and was

observed in the experiment. An instability analysis of the
wakes embedded in a boundary layer was studied in Bajwa s

for the modeling of the presence of particles in bounded and
unbounded shear flows. Absolute instability was found to

occur for sufficiently large values of the centerline wake
defect 6.

This study is concerned with the linear instability of
confluent wake/boundary layer flows. The confluent

wake/boundary layer is among the flow phenomena
observed in the complex flow field around multi-element
airfoils. For instance, for a three-element airfoil the slat and

the flap element may be deployed and extended away from
the main element in a landing or a take-off configurations.

The wake generated by a proceeding element, such as the

slat, appears above the succeeding element, or the main
element. The interaction of the confluent wake and boundary

layer occurs over a significant portion of the main element.
Experiments 913 have shown that the confluent wake

/boundary layer can exhibit entirely different behavior,

depending upon the operating conditions, such as the
Reynolds number and the relative positions between the
elements. This change causes dramatic variation in boundary
layer transition 1°'1_ and its aerodynamic performance 12'_3.

There are also evidence suggesting that the physics of the
flow in the slat near wake region above the main element is

critical to the flow noise generated by multi-element
airfoils 14.

Due in part to the high Reynolds numbers, it is

difficult and expensive to experimentally examine the flow

in detail. Computational studies based on the Reynolds-
averaged Navier-Stokes equations of such flows 15'16 suggest

that the mean or average quantities can be obtained that

agree satisfactorily with measured data.



In this study, the characteristicsof small
disturbances in the confluent near wake and boundary layer

are investigated. The flow model considered consists of a
wake located above the Blasius boundary layer. The base

flow velocity profile adopted represents a reasonable

approximation to the measured 9 and the calculated ts mean

velocity profiles in the confluent near wake/boundary layer

region over a multi-element airfoil• The amplitudes of the
disturbances are assumed small such that a linearized form

of the Navier-Stokes equations can be used. A global
numerical solution technique jT'lsa9 is applied in this study.

The global method is capable of predicting the entire
eigenvalue spectrum, including the discrete and the

continuous parts, which is important to the current studies.
As will be shown in the results, multiple discrete modes
associated with the boundary layer and wake flow can

appear and a global approximation is more desirable a
method to use than the traditional local shooting method. As

a result, the study establishes a link, based on a linear

analysis, between the modes for confluent wake and laminar
boundary layer, which often proceeds that with transitional
and turbulent boundary layer in the flow over multi-element
airfoils.

The Orr-Sommerfeld equation will be briefly

derived in the following section. It is followed by a

description of the base velocity profile and the global
method of solution.

2. Formulation and Method of Solution

Stability Equation
The flow geometry considered is shown in Figure

1. The two-dimensional incompressible confluent
wake/boundary layer is described in the Cartesian coordinate

system, (x*,y*,z*). The instantaneous value of a flow

variable, ¢*, is decomposed into a time-independent

component denoted by the upper case and a fluctuation
denoted by a prime. That is,

u * (x*, y*, z*,t*) = u'* (x*, y*, z*,t*) + U * (y*)

v * (x*, y*, z*, t*) = v" * (x*, y*, z*,t*)
(1)

w * (x*, y*, z*,t*) = w" * (x*, y*, z*,t*)

p * (x*,y*,z*,t*) = p'* (x*,y*,z*,t*)

where u*,v*, and w* are the velocity components in the

x*,y*, and z* directions, respectively, p'denotes

pressure.
For simplicity, the parallel flow assumption,

commonly used in hydrodynamic stability analyses, is

applied. This approximation results in the leading-order

problem in a multiple scale method that includes the effects
of the slow flow divergence z°. Thus, in the current analysis,

the nonparallel effects are not considered. The continuity

and the momentum equations are nondimensionalized by

using the displacement thickness of the boundary layer, 6*,

bl_* ,as the length scale and the velocity of the free stream,

as the velocity scale and linearized about the base flow.

Separable solutions are then sought for the fluctuations in
the non-dimensional form,

{ujlfurlv' = _v(y) [exp[i(o_x- cot)]

i |w<y)l
[P(Y)J

(2)

The u, w, and p variables may be eliminated from the

linearized equations and the Orr-Sommerfeld equation for
the cross-stream velocity perturbation, v(y), can be given by,

[i( aU - co)(_y 2 - a 2)

• d2U 1 , d 2

(3)

Equation (3) governs the mode shape of wavelike
disturbances associated with the base profile in terms of the

streamwise wavenumber, _, the wave frequency, o_ and the

, U* ¢_*

flow Reynolds number, R_ (= _-----_-----).The boundary
V

conditions for v are,

dv

v=--=O at y =0, oo
dy

(4)

Base Flow Velocity Profiles
The flow model depicted in Figure 1 consists of

two separate regions where flow shearing can occur. They
are the region near the wall where the boundary layer
develops and the region away from the wall where the wake

generated by an upstream element is located. The Blasius
velocity profile is used for the boundary layer. The wake

profile is defined by

U = 1.0- aexp(-0.5(y -h) 2) (5)

where a represents the wake velocity defect and h the wake
height, or the distance between the wake and the wall.
Equation (5) closely mimics measured wake velocity profile s

and is a reasonable analytical expression to use in the current

study. The base flow velocity is obtained by a superposition
of the Blasius velocity profile and equation (5). A similar

superposition of the velocity profiles has also been used in
the convective stability analysis s of a wake embedded in the

Blasius boundary layer. Care has been taken to ensure that
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no discontinuities exist in the second derivative of the

d2U
resulting velocity distribution, --

d y2 "

Equations (3), (4), and (5) define an eigenvalue

problem. In the spatial instability analysis described here,

the complex wave number, 0", is the eigenvalue and the

frequency, a_ is taken to be real. Solutions are sought as the

disturbances develop spatially downstream.

Numerical Scheme

The Orr-Sommerfeld equation (3) is integrated

numerically using a global method based on sixth - order
accuracy finite difference formulae. The grid node

distribution in the physical domain allows for high node
density in the high shear regions near the wall and in the

wake according to

where

Yi = Yz +O(Yn -Y_) (6)

-=r/+-_l tanhI(_ :i-1 -r/)(0.51n I+Y)]
0=¢ Y_ I_ n-1 1-ZJ

_= 1, r/= 1, for clustering near Yl

_= 1, r/= 0, for clustering near y_

_= 2, 17= 1, for clustering near y?and y;

y is a clustering coefficient that ranges between 0 and 1. The
discretization of equation (3) using the finite difference
method results in a system of homogeneous equations

nonlinear in the parameter, tr,

D 4 (o')v = 0 (7)

The matrix, 1:)4, is a lambda matrix of degree four 21 and can

be expressed as a scalar polynomial with matrix coefficients,

04(0" ) = C0t2 '4 +Ct0" 3 +C20" 2 + C30"+ C 4 (8)

With the inclusion of the boundary conditions, the matrices

C's are square matrices of order 12 which represents the
number of grid point in y. A linear companion matrix
method has been used to linearize the lambda matrix. The

resulting general eigenvalue problem becomes

{ E - crF } V = 0 (9)

where

-- C I - C 2 - C 3 - C 4t 0 0 0

E=/0" I 0 0

[o 0 I 0

CO 0 0 0 l

0 1 0 0

F= 0 0 I 0

0 0 0 I

and

V= 0"2v

 ovj
Equation (9) can be further transformed to an algebraic
eigenvalue problem seeking the eigenvalues of matrix A,

-ColCl -C01C2 C01C3 C01C41
A=[ i 001 010 000 (10)

The eigenvalues may be obtained by using QR or QZ

algorithms. The details of the formulation and the
application of the Linear Companion Matrix method can be
found in references 17,19, and 21.

The solver is validated by comparing the
eigenvalue with reported data for the Blasius boundary layer

and wakes, respectively. The results of the code validation
and spatial instability calculations for the model confluent
wake/boundary layer are presented in the next section.

3. Results and Discussions

Table 1 shows a comparison of the calculated
eigenvalue with that of Jordinson 22 for the Blasius boundary

layer. The present values agree well with the data,

particularly for cases with a high number of grid points, N.
To validate the current numerical solver for the wake flow, a

measured wake profile 5 is placed at h = 20 and the boundary
layer removed from the viscous wall. Figure 2 shows a

comparison of the dispersion relationship obtained by using
the present numerical solver and that reported 5 for both the

symmetric and the antisymmetric modes, based on the cross-

stream velocity purturbance, v. The results obtained by using

the current global method with N = 300 agree well with the
previous calculation, which is based on a local shooting



method.Theresultsshowthattheglobalnumericalsolver
usedin thecurrentstudyis accuratelycapturingthewake
andtheboundarylayerinstabilities.In thefollowing,the
instabilitymodesassociatedwith the modelconfluent
wake/boundarylayerflowareexamined.

Theflow modelusedin the presentanalysisis
showninFigure1.Figure3showsthespectrumofthewave
speedfor themodelconfluentwake/boundarylayerflow
with R_ =998 and co= 0.1122. The wake height, h, is 20,

the width is 4.83, and the wake maximum velocity defect, a,

is 0.6. For comparison, the wave speed spectrum for the

Blasius boundary layer alone with the same R_ and co is

also included. In addition to the boundary layer mode, two
discrete unstable modes appear in the case of the confluent

wake/boundary layer, which are identified as Wake Mode 1
and Wake Mode 2. Modes I and 2 correspond to the

symmetric and the antisymmetric modes found in the linear

stability of the wake flows, respectively. The presence of the
wake above the boundary layer at this height apparently has
no significant effects on the continuous part of the

eigenvalue spectrum. In the following, the discrete unstable
modes in the confluent wake/boundary layer will be
examined in details as they are linearly unstable and are

likely to be physically observed.
Figure 4 shows the neutral curve of the boundary

layer mode with h = 7.14 and a = 0.6. The neutral curve for
the Blasius boundary layer 22 is also included for comparison.

The presence of the wake has resulted in a significant
decrease of the critical Reynolds number. The value is 445
for the present case, compared to 520 for the Blasius

boundary layer. The neutral curve moves up slightly for all
Reynolds numbers with more significant changes in the high

frequency range near the critical point. As can be seen from
Figure 5, which shows the variation of the spatial growth

rate, -o_ , with frequency for R_ =998, the neutral

frequencies increase as the wake is brought closer to the
wail. Figure 5 also shows that the maximum growth rate of

the unstable boundary layer mode increases with the reduced
distance between the wake and the wall.

To examine the effect of h on the boundary layer

mode shape, the eigenfunctions for a frequency of co =
0.1122, which roughly corresponds to the most unstable

frequency, are calculated and their real parts are presented in
Figure 6. The eigenfunctions have been normalized by their

respective maximum amplitudes. The eigenfunction of the
boundary layer mode decays faster away from the wall as
the wakes become situated closer to the wall. The damping

effect of the wake on the eigenfunction of the boundary

layer mode is quite significant in the region above the wake.
The velocity defect of the wake in the model

problem is determined by the value of a, which also
determines the shear strength for a constant wake width.

Figure 7 shows the change in the growth rate of the co =
0.1122 boundary layer mode with the wake velocity defect

and wake height. The growth rate for such a mode in the

Blasius boundary layer, -0.0057, is indicated in the figure.

Figure 7 shows that the amplifying effect of the reduced
wake height on the growth rate of the boundary layer mode,
as is discussed above, becomes more pronounced as the

velocity defect of the wake increases. For example, when the
value of h is about 6, there is an increase of 400% for the

growth rate for a = 0.8, as compared to about 40% for ct =
0.2. It should be noted that the lowest value of the centerline

velocity defect for a Gausian wake profile to exhibit absolute
instability is 0.9466 .

In addition to the boundary layer mode, the

eigenvalue spectrum for the confluent wake/boundary layer,
shown in Figure 3, also contains two discrete, unstable
modes that are directly associated with the wake. These
modes have been identified as Wake Modes 1 and 2. As is

discussed above, the Mode 1 disturbances are symmetric

with respect to the wake center, where the velocity defect is
the maximum, and Mode 2 represents antisymmetric

disturbances. Figure 8 shows the variations of the spatial

growth rates of Mode 1 and Mode 2 with wake height h and

velocity defect a. The Reynolds number is 998 and 09 =
0.1122. The growth rates for Mode 1 and Mode 2 are both
seen to decrease as h decreases. This appears true for the

different value of the velocity defect selected, from 0.2 to
0.8, with more prominent decreases for the high-defect
cases. Note that the boundary layer mode, as shown in

Figure 7, becomes more unstable as the wake is placed
closer to the wall. Therefore, the reduced distance between

the wall and the wake has an amplifying effect on the
boundary layer mode, but a damping effect on the wake

modes. A composite view of the growth rates of the various
modes, as a function of a and h, is given in Figure 9. For a

range of value of a, the wake modes are more unstable than
the boundary layer mode at all wake height. The wake
modes become less unstable than the boundary layer mode

for cases where wakes with small velocity defect are placed
close to the wall, i.e., cases with low values of a and h. For

cases with higher values of a, for example, 0.6 and 0.8, the
spatial growth rates of the wake modes remain higher than
that of the boundary layer mode even at the lowest wake

height.

Figures 8 and 9 suggest that for low velocity defect,
Mode 1 is more unstable than the antisymmetric Mode 2 for

all the wake height. The trend is then reversed when the
velocity defect increases. In Figure 10 the effect of the wake
velocity defect on the growth rate of Modes 1 and 2 are

shown for h = 20. The growth rate of Mode 1 is higher than
that of Mode 2 for the low values of a and increases nearly

linearly with a. The growth rate of Mode 2 is smaller than

that of Mode 1 for the lower a, but increases rapidly as the
value of a increases. Mode 2 becomes more unstable than

Mode 1 for a higher than about 0.5. In other words, there is a
switching of the relative level of the spatial growth rate

between Mode 1 and Mode 2 based on the present confluent

wake/boundary layer model. Calculations using the



measuredvelocityprofile5 in theverynearwakeregion
where the velocity defect is high also show a similar
unstable mode switching behavior between the symmetric

and the antisymmetric modes. These results seem to indicate

that the antisyrnmetric mode, which generates "puffing"
disturbances, is possible to be observed in the near wake

immediately downstream of the wake-generating body.

The unstable frequency spectra for Mode 1 and
Mode 2 are examined and shown in Figure I I for

R e = 998 and for a = 0.4, 0.6, and 0.8. The unstable mode

switching appears to have occurred only at low frequency

range for a = 0.6 and 0.8. The frequencies for the most
unstable waves for both Modes 1 and 2 decrease slightly as a

increases. The growth rate for the most unstable Mode 1 is
higher than that of Mode 2 for all the a values tested.

Figure 12 shows the real part of the eigenfunctions

of Modes 1 and 2 for R_ =998, co= 0.1122, and a = 0.4.

The eigenfunctions have been normalized by their respective

highest amplitudes. It is apparent that the shapes of the
eigenfunctions of the wake modes are not strongly

dependent upon the wake height.

4. Concluding Remarks

A linear spatial viscous instability analysis for

incompressible confluent wake/boundary layer flows has
been performed. The global numerical solution tool is

validated by comparisons with available data. Two types of
discrete unstable modes are identified, which are rooted,

respectively, to the boundary layer and the wake parts of the
flow model. It is found that the critical Reynolds number
associated with the boundary layer mode is reduced by the

presence of the wake. The presence of the wake above the
boundary layer appears to have an amplifying effect on the

growth rate of the boundary layer mode. It is also shown that
such an amplifying effect intensifies with an increase of the
wake velocity defect. The mode shape of the boundary layer

mode also seems to diminish above the wake, indicating that
the wake has a confining influence on the disturbances
associated with the boundary layer mode. The results

suggest that the wake may play an important role in the
growth of the linear disturbances and the initiation of

transition in the boundary layer. The unstable modes
associated with the wake are stabilized by the reduced wake

height. An unstable mode switching of the symmetric and

the antisymrnetric modes is found to occur for low frequency
wake modes for cases with high velocity defects, indicating

a possible appearance of antisymmetric "puffing"
disturbance immediately downstream of the wake-generating
body.
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Table 1. Eigenvalues. R e = 998, o= 0.1122,

= 0.3086 - i 0.0057 (Jordinson22).

N

36

41

51
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71
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O_

0.998 0.308444 - i 0.005965

0.998 0.308599 - i 0.005662
0.998 0.308607 - i 0.005698

0.998 0.308597 - i 0.005707

0.998 0.308592 - i 0.005707

0.997 0.308591 - i 0.005704
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Figure 2. Dispersion relation for wake modes.
(a) Symmetric; (b) Antisymmetric.
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Figure 12. Eigenfuctions for Modes 1 and 2.
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(a) Mode 1; (b) Mode 2.
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